Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Altern Ther Health Med ; 29(5): 293-297, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2306450

ABSTRACT

Objective: To explore the changes in college students' awareness of health protection under the normalization of COVID-19, and to seek its connection with the epidemic management in colleges and universities, so as to provide reference information for continuous health education activities and the cultivation of college students' health emergency literacy in colleges and universities. Methods: Qualitative interviews were used to understand the extent of health emergency literacy among college students enrolled in the context of a normalized epidemic and the factors associated with it that cause changes around a question outline. Results: The interviewees generally had a lax mentality in the late stage of the interview, the importance they attached to epidemic prevention and control decreased significantly, and the way to know about epidemic protection measures and other knowledge was mainly through the mass news media. All respondents affirm the importance of social software for outbreak prevention and control. All 17 interviewees were able to mention basic outbreak protection methods, but 15 of them showed inconsistent behavior in words and actions later. Conclusion: The vast majority of respondents' health emergency literacy appears to weaken in the late stages of epidemic normalization, and the effect of traditional approaches used by universities to improve college students' health emergency literacy is weak.


Subject(s)
COVID-19 , Health Literacy , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Surveys and Questionnaires , Students , Health Literacy/methods , Qualitative Research
2.
J Appl Microbiol ; 133(4): 2484-2500, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1937944

ABSTRACT

AIMS: This study aimed to provide a safe, stable and efficient SARS-CoV-2 oral vaccine development strategy based on the type III secretion system of attenuated Salmonella and a reference for the development of a SARS-CoV-2 vaccine. METHODS AND RESULTS: The attenuated Salmonella mutant ΔhtrA-VNP was used as a vector to secrete the antigen SARS-CoV-2 based on the type III secretion system (T3SS). The Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS promoter (sifB) was screened to express heterologous antigens (RBD, NTD, S2), and the SPI-2-encoded secretion system (sseJ) was employed to secrete this molecule (psifB-sseJ-antigen, abbreviated BJ-antigen). Both immunoblotting and fluorescence microscopy revealed effective expression and secretion of the antigen into the cytosol of macrophages in vitro. The mixture of the three strains (BJ-RBD/NTD/S2, named AisVax) elicited a marked increase in the induction of IgA or IgG S-protein Abs after oral gavage, intraperitoneal and subcutaneous administration. Flow cytometric analysis proved that AisVax caused T-cell activation, as shown by a significant increase in CD44 and CD69 expression. Significant production of IgA or IgG N-protein Abs was also detected by using psifB-sseJ-N(FL), indicating the universality of this strategy. CONCLUSIONS: Delivery of multiple SARS-CoV-2 antigens using the type III secretion system of attenuated Salmonella ΔhtrA-VNP is a potential COVID-19 vaccine strategy. SIGNIFICANCE AND IMPACT OF THE STUDY: The attenuated Salmonella strain ΔhtrA-VNP showed excellent performance as a vaccine vector. The Salmonella SPI-2-encoded T3SS showed highly efficient delivery of SARS-COV-2 antigens. Anti-loss elements integrated into the plasmid stabilized the phenotype of the vaccine strain. Mixed administration of antigen-expressing strains improved antibody induction.


Subject(s)
COVID-19 , Type III Secretion Systems , Antigens, Heterophile/metabolism , Bacterial Proteins/metabolism , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A/metabolism , Immunoglobulin G , SARS-CoV-2/genetics , Salmonella typhimurium/genetics , Type III Secretion Systems/genetics , Vaccine Development
SELECTION OF CITATIONS
SEARCH DETAIL